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Abstract

This paper simulates the NLR7301 airfoil limit cycle oscillation (LCO) caused by fluid–structure interaction (FSI)

using Reynolds averaged Navier–Stokes equations (RANS) coupled with Spalart–Allmaras (S–A) one-equation

turbulence model. A low diffusion E-CUSP (LDE) scheme with 5th order weighted essentially nonoscillatory scheme

(WENO) is employed to calculate the inviscid fluxes. A fully conservative 4th order central differencing is used for the

viscous terms. A fully coupled fluid–structural interaction model is employed. For the case computed in this paper, the

predicted LCO frequency, amplitudes, averaged lift and moment, all agree excellently with the experiment performed by

Schewe et al. The solutions appear to have bifurcation and are dependent on the initial fields or initial perturbation. The

developed computational fluid dynamics (CFD)/computational structure dynamics (CSD) simulation is able to capture

the LCO with very small amplitudes measured in the experiment. This is attributed to the high order low diffusion

schemes, fully coupled FSI model, and the turbulence model used. This research appears to be the first time that a

numerical simulation of LCO matches the experiment. The simulation confirms several observations of the experiment.

& 2010 Elsevier Ltd. All rights reserved.
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1. Introduction

Flow induced structural vibration is one of the most challenging problems affecting the military and commercial

aircraft. Due to the complicated nonlinear fluid–structure interaction (FSI) phenomena, there is a lack of high fidelity

computational tools to study the basic physics and to accurately predict structural failure. For the airframe, the FSI

problems include transonic flutter, limit cycle oscillation, buzz, buffet, etc. For propulsion turbo-machinery, there are the

problems such as high cycle fatigue caused by forced response or stall flutter, etc. Helicopter rotor blades constantly work

under the vibration induced by blade wake and tip vortices. Recently, the growing interest of micro-air vehicles has posted

many challengers in simulating FSI of flapping wings. The development of advanced methodologies to accurately simulate

fluid–structure interactions hence will have broad impact on improving the performance of various aircraft.

The difficult issue that the FSI community has faced is the nonlinearity caused by both fluid and structure (Bendiksen

and Seber, 2008). The aerodynamic nonlinearity poses more challenge than the structural one (Bendiksen, 1992; Tang
e front matter & 2010 Elsevier Ltd. All rights reserved.
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Nomenclature

cl ; cm lift and moment coefficients, respectively

e total energy per unit mass

E;F;G inviscid fluxes in x; Z; z directions

h plunge displacement

J coordinates transformation Jacobian

M Mach number

p static pressure

Pr Prandtl number

Prt turbulent Prandtl number

ra radius of gyration

R;S;T viscous fluxes in x; Z; z directions

Re Reynolds number

t time

u; v;w Cartesian velocity components in x; y; z
directions

xa static unbalance

x; y; z Cartesian coordinates

a pitching displacement

aðtÞ time dependent AoA

aA amplitude of the oscillating angle

am mean value of the oscillating AoA

a0 off-wind value of a
dh Lehr heave damping

da Lehr pitching damping

m molecular viscosity in equations of flow;

mass ratio in equations of motion

mt turbulent viscosity

n kinematic viscosity

x; Z; z generalized coordinates

r density

t molecular viscous stress tensor

o angular frequency

oa uncoupled circular pitching frequency

oh uncoupled circular heave frequency
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et al., 2003). These problems are often accompanied or caused by complicated flow phenomena such as shock

wave/turbulent boundary layer interaction, flow separation, vortex shedding, etc.

The transonic LCO is a challenging issue for numerical simulation due to the complex shock/boundary-layer

interaction. The weak divergence, flutter divergence and onset of LCO could be captured and predicted quite well, but

the amplitude of LCO was largely over-predicted by more than an order of magnitude for both the plunge and pitching

amplitude. These can be seen in the work by Bendiksen (1992), Tang et al. (2003), Morton and Beran (1999) and Weber

et al. (2001). Even though the inviscid Euler solver can capture the onset of LCO, the viscous Navier–Stokes solvers

predict the LCO amplitude closer to experiments than the Euler solver. The LCO amplitude is also dependent on the

turbulence model used as pointed out by Tang et al. (2003) when the NLR7301 airfoil is calculated (Schewe et al., 2003;

Dietz et al., 2004). The nonlinear structural model does not really produce better results of LCO as indicated by

Gordnier (2003). The calculation with wind tunnel wall porosity yields better LCO amplitude, but a significant

difference remains if the actual wind tunnel wall porosity is used (Castro et al., 2001).

According to Bendiksen (1992), both the LCO and transonic dip may be caused by aerodynamic nonlinearity due to

shock wave/turbulent boundary layer interaction and the resulted separation. Schewe et al. (2003) and Dietz et al.

(2004) tend to support this hypothesis. Schewe et al. (2003) attribute two nonlinearity mechanisms to the amplitude-

limiting phenomenon: (i) the oscillating shock strength and the coupled pulsations of the marginally separated flow

beneath the shock; (ii) the trailing edge separation they deduced from the significant increase in the r.m.s. value of the

pressure fluctuation near trailing edge.

Schewe et al. (2003) gave the following important observations and questions. First, the LCOs they captured have

very small relative amplitudes of the plunge on the order of 2/1000 to 3/1000 of the chord and the pitching amplitude

o1�. They questioned if the LCOs of such small amplitudes are the artifacts of the wind-tunnel experiment or could

also occur in unbounded flow. Second, since all the reported numerical simulations at that time only captured the much

greater LCO amplitudes, they questioned if it means the co-existence of multiple LCOs at constant flow conditions.

They discovered the multiple coexisting LCOs in their experiments. Third, they found that the wall boundary layer

transition from laminar to turbulent does not have much effect on LCO. Fourth, they verified that the wind tunnel wall

interference with or without perforated test-section does not have much effect on LCOs. Fifth, they observed that the

transition from steady to oscillatory state can be either continuous or discontinuous.

Most of the calculations of fluid–structure interaction today employ 2nd order accuracy in both space and time. The

shock wave/boundary layer interaction is considered as the critical factor affecting the nonlinearity of transonic airfoil

LCO (Schewe et al., 2003). It is hence very important to have a high-resolution low-diffusion shock capturing scheme to

resolve shock/boundary-layer interaction. The WENO scheme is a desirable candidate since it can achieve uniformly

high order accuracy up to the shock discontinuities. In addition, the low diffusion of the numerical scheme is important

to accurately predict flow damping, which may significantly affect the structure displacement.

The objective of this research is to simulate the challenging nonlinear LCO phenomenon with high fidelity numerical

algorithms, which include the high order (5th order) WENO scheme (Shu, 1997; Shen et al., 2007), a low diffusion
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E-CUSP (LDE) Riemann solver (Zha et al., 2008; Wang and Zha, 2008a), a new 4th order fully conservative central

differencing scheme for viscous terms (Shen et al., 2007), an implicit 2nd order accuracy time marching scheme with

Gauss–Seidel line relaxation, a fully coupled fluid–structural interaction model (Chen et al., 2004, 2007; Chen and Zha,

2005), and advanced Spalart–Allmaras (S–A) one-equation RANS turbulence model (Spalart and Allmaras, 1992).

The rigorous algorithm of this research appears to have paid off, with the numerical simulation matching the

experiment excellently for the first time. This simulation also confirms some of the experimental observations and

answers some important questions. First, the LCOs with the small relative amplitude is captured with unbounded flows

in the numerical simulation. This means they should not be the artifacts of the wind-tunnel experiment and most likely

are a factual phenomenon. Second, the co-existence of multiple LCOs at constant flow conditions is confirmed in our

simulation. The reason that other numerical simulations only capture the LCOs with large amplitudes may be due to

their high numerical dissipation that either smears out the small amplitude LCO or is only able to resolve the large

amplitudes LCOs. Third, the numerical simulation of this research confirms that the wall boundary layer transition

from laminar to turbulent does not have a large effect on LCOs at high Reynolds number, because our simulation

assumes that the boundary layer is fully turbulent from the airfoil leading edge. Fourth, the simulation confirms that the

wind tunnel wall interference with or without perforated test-section does not have much effect on LCOs, because our

simulation uses the unbounded flow condition with no wind tunnel wall effect at all. Fifth, the numerically captured

LCO is accompanied with a very small flow separation near the trailing edge, which is consistent with the speculation of

Schewe et al. (2003) obtained from the experiment. This verifies the hypothesis that the LCO processes are maintained

by the nonlinearity of flow separation induced by shock/boundary-layer interaction.
2. Governing equations

The governing equations are the Reynolds Averaged Navier–Stokes (RANS) equations coupled with the Spalart–

Allmaras (S–A) one-equation turbulence model (Spalart and Allmaras, 1992). In a generalized coordinate system,

the conservative form of the equations are given as the following:
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ðnþ ñÞðmUrñÞ
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bk ¼ uitki�qk; ð6Þ
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1

s
ðnþ ñÞrñUrr
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In the equations above, U, V and W are the contravariant velocities in x, Z and z directions.

U ¼ lt þ lUV¼ lt þ lxuþ lyvþ lzw;

V ¼mt þmUV¼mt þmxuþmyvþmzw;

W ¼ nt þ nUV¼ nt þ nxuþ nyvþ nzw; ð8Þ

where V¼ ðu; v;wÞ is the velocity vector, l;m; n are the normal vectors on x; Z; z surfaces with their magnitudes equal to

the elemental surface area and pointing to the directions of increasing x; Z; z,

l¼
rx
J

dZdz; m¼
rZ
J

dxdz; n¼
rz
J

dxdZ; ð9Þ

lt, mt, nt stand for the grid moving velocities and are defined as

lt ¼
xt

J
dZdz; mt ¼

Zt

J
dxdz; nt ¼

zt

J
dxdZ: ð10Þ

When the grid is stationary, lt ¼mt ¼ zt ¼ 0.

Since Dx¼DZ¼Dz¼ 1 are used in the current discretization, Eqs. (9) and (10) are written as follows in the solver:

l¼
rx
J
; m¼

rZ
J
; n¼

rz
J
; ð11Þ

lt ¼
xt

J
; mt ¼

Zt

J
; nt ¼

zt

J
: ð12Þ

The shear-stress tik and total heat flux qk in Cartesian coordinates can be expressed as

tik ¼ ðmþ mtÞ
@ui
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�
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3
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� �
; ð13Þ

qk ¼�
m
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þ
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� �
@T

@xk

; ð14Þ

where Pr is the Prandtl number, Prt is the turbulent Prandtl number, m is the molecular viscosity determined by

Sutherland law, and mt is the turbulent viscosity determined by the S–A model (Spalart and Allmaras, 1992),

mt ¼ rñfv1: ð15Þ

The kinematic viscosity n is defined as

n¼
m
r
: ð16Þ

In Eqs. (4), (6), (13) and (14), the repeated subscripts i or k represent the coordinates x, y and z, following the Einstein

summation convention. Eqs. (13) and (14) will be transformed to a generalized coordinate system in computation.
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The sixth equation of the governing Eqs. (1)–(5) is the S–A one-equation turbulence model (Spalart and Allmaras,

1992). The functions in the equation are given as
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is the magnitude of vorticity, which is also transformed to generalized coordinate system, ot is the wall vorticity at the

wall boundary layer trip location, d is the distance to the closest wall. dt is the distance of the field point to the trip

location, DU is the difference of the velocities between the field point and the trip location, Dxt is the grid spacing along

the wall at the trip location.

The constants in S–A model are set to have the following values:

s¼ 2
3
; Cb1 ¼ 0:1355; Cb2 ¼ 0:622; k¼ 0:41; Cv1 ¼ 7:1;

Cw1 ¼Cb1=k2 þ ð1þ Cb2Þ=s; Cw2 ¼ 0:3; Cw3 ¼ 2;

Ct1 ¼ 1; Ct2 ¼ 2; Ct3 ¼ 1:2; Ct4 ¼ 0:5:

For large r, fw reaches a constant. So, if rZ10, we let r=10.

The initial value and boundary conditions of ñ are given as the following (Wang and Zha, 2008a):

initial value : ñ¼ 2;

at walls : ñ¼ 0;

far field inflow : ñ¼ 0:02;

far field outflow : ñ is extrapolated:
3. The numerical method

3.1. The low-diffusion E-CUSP (LDE) scheme

The LDE scheme developed by Zha et al. (2008) is employed to evaluate the inviscid fluxes. The basic idea of the

LDE scheme is to split the inviscid flux into the convective flux Ec and the pressure flux Ep. Even with the one extra
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equation from the S–A model, the splitting is basically the same as the original scheme for the Euler equation and is

straightforward. This is an advantage over the Roe scheme, for which the eigenvectors need to be derived when any

extra equation is added to the governing equations.

In generalized coordinate system, the flux E can be split as follows:

E¼Ec þ Ep ¼
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reU

rñU
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; ð18Þ

where U is the contravariant velocity in x direction and is defined as

U ¼ lt þ lxuþ lyvþ lzw; ð19Þ

U is defined as

U ¼ lxuþ lyvþ lzw: ð20Þ

The convective term, Ec is evaluated by

Ec ¼ rU
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Let

C ¼ cðl2x þ l2y þ l2z Þ
1=2; ð22Þ

where c¼
ffiffiffiffiffiffiffiffiffiffi
gRT
p

is the speed of sound. Then the convective flux at interface i þ 1
2 is evaluated as
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iþ1=2 ¼C1=2½rLCþf c
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R�; ð23Þ

where the subscripts L and R represent the left- and right-hand sides of the interface, and
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The pressure flux, Ep is evaluated as follows:

E
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The contravariant speed of sound C in the pressure vector is consistent with U . It is computed based on C as

C ¼C�lt: ð25Þ

The use of U and C instead of U and C in the pressure term of the energy equation is to take into account the grid

speed, so that the flux will transit from subsonic to supersonic smoothly. When the grid is stationary, lt=0, C ¼C,

U ¼U .

The pressure splitting coefficient is

P7
L;R ¼

1
4
ðML;R71Þ2ð2MLÞ: ð26Þ
3.2. The fifth-order WENO scheme

The interface flux, Eiþ1=2 ¼EðQL;QRÞ, is evaluated by determining the conservative variables QL and QR using the

fifth-order finite difference WENO scheme (Shen et al., 2007, 2009). For example

ðQLÞiþ1=2 ¼o0q0 þ o1q1 þ o2q2; ð27Þ

where

q0 ¼
1
3

Qi�2�
7
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5
6
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1
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1
3
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5
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Qiþ1�
1
6
Qiþ2; ð28Þ

ok ¼
ak

a0 þ � � � þ ar�1
; ð29Þ

ak ¼
Ck

eþ ISk

; k¼ 0; . . . ;r�1; ð30Þ

C0 ¼ 0:1; C1 ¼ 0:6; C2 ¼ 0:3; ð31Þ
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13
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ðQi�2�2Qi�1 þQiÞ

2
þ 1

4
ðQi�2�4Qi�1 þ 3QiÞ

2;

IS1 ¼
13
12
ðQi�1�2Qi þQiþ1Þ

2
þ 1

4
ðQi�1�Qiþ1Þ

2;

IS2 ¼
13
12
ðQi�2Qiþ1 þQiþ2Þ

2
þ 1

4
ð3Qi�4Qiþ1 þQiþ2Þ

2; ð32Þ

where e in Eq. (30) is originally introduced to avoid the denominator becoming zero and is supposed to be a very small

number. In Shen et al. (2007, 2009), it is observed that ISk will oscillate if e is too small and also shift the weights away

from the optimum values in the smooth region. The higher the e values, the closer the weights approach the optimum

weights, Ck, which will give the symmetric evaluation of the interface flux with minimum numerical dissipation. When

there are shocks in the flow field, e cannot be too large to maintain the sensitivity to shocks. In Shen et al. (2007, 2009),

e¼ 10�2 is recommended for transonic flows with shock waves.

The viscous terms are discretized by a fully conservative fourth-order accurate finite central differencing scheme

developed by Shen et al. (2007, 2008).
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3.3. Implicit time integration

The time dependent governing equations are solved using dual time stepping method suggested by Jameson (1991).

To achieve a high convergence rate, the implicit pseudo time marching scheme is used with the unfactored Gauss–Seidel

line relaxation. The physical temporal term is discretized implicitly using a three point, backward differencing as in the

following:

@Q

@t
¼

3Qnþ1�4Qn þQn�1

2Dt
; ð33Þ

where n�1, n and nþ1 are three sequential time levels, which have a time interval of Dt. The first-order Euler scheme is

used to discretize the pseudo temporal term. The semi-discretized equations of the governing equations are finally given

as follows:

1

Dt
þ

1:5

Dt

� �
I�

@R

@Q

� �nþ1;m
" #

dQnþ1;mþ1 ¼Rnþ1;m�
3Qnþ1;m�4Qn þQn�1

2Dt
; ð34Þ

where Dt is the pseudo time step, R is the net flux evaluated on a grid point using the fifth-order finite difference WENO

scheme for the inviscid fluxes and the fourth-order central differencing scheme for the viscous terms (Shen et al., 2007,

2009, 2008).
4. Equations of motion

The NLR7301 airfoil is elastically mounted as shown in Fig. 1. The nondimensional form of the equations governing

the motion of the two-degree-of-freedom spring-mass-damper system are

1 �xa

�xa r2a

 !
@2q

@t2
þ 2

dhoh 0

0 r2adaoa

 !
@q

@t
þ

o2
h 0

0 r2ao
2
a

 !
q¼

2

pm

cl

cm

 !
; ð35Þ

where xa is the static unbalance, ra is radius of gyration, oa is uncoupled circular pitching frequency, oh is uncoupled

circular heave frequency, da is Lehr pitching damping, dh is Lehr heave damping, m is mass ratio, cl and cm are lift and

moment coefficients, respectively. q is defined by

q¼
q1

q2

 !
¼

h

a�a0

 !
; ð36Þ

in which h and a are the plunge and pitching displacements, respectively, a0 is the off-wind value of a.
Fig. 1. Model of the elastically mounted NLR7301 airfoil.
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Eq. (35) is transformed to a state matrix form and expressed as

M
@S
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þ K � S¼Q; ð37Þ

where
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>>>>>>;
:

The structural equation (37) is discretized and solved implicitly in each physical time step in a manner consistent with

flow governing equations (34):

1

Dt
I þ

1:5

Dt
M þ K

� �
dSnþ1;mþ1 ¼Qnþ1;mþ1�M

3Snþ1;m�4Sn þ Sn�1

2Dt
�KSnþ1;m: ð38Þ

The fluid–structure interaction is implemented in a fully couple manner (Chen et al., 2004, 2007; Chen and Zha, 2005).

Within each physical time step, the flow equations and structural equations are iterated simultaneously until the

prescribed convergence criteria are satisfied for both flow and structural solver. After the convergence criteria are

reached with the max-Norm residual smaller than 10�6, the fluid–structural interaction proceeds to the next physical

time step.
5. Results and discussion

The algorithm is first validated with experiment for the forced pitching airfoil, NACA64A010, and then is used to

calculate the LCO of NLR7301 Airfoil.
5.1. Forced pitching airfoil

As a validation case of transonic airfoil fluid–structure interaction, a forced pitching airfoil, NACA64A010 is

calculated and the results are compared with experiment.

For this transonic airfoil, an O-type grid is generated with the dimension of 281� 66 (see Fig. 2).

The airfoil is forced in pitch about its quarter chord sinusoidally. The airfoil oscillation is defined by a function of the

time-dependent angle of attack (AoA):

aðtÞ ¼ am þ aAsinðotÞ; ð39Þ

where aðtÞ is the time dependent AoA, am is the mean value of the oscillating AoA, aA is the amplitude of the oscillating

angle, o is the angular frequency which is directly related to the reduced frequency

kc ¼
oC

2U1
; ð40Þ

where C is the chord of the airfoil, and U1 is the free-stream velocity.

To be consistent with the experiment, the following primary parameters are employed in the unsteady calculation:

am ¼ 0, aA ¼ 1:01�, Reynolds number (based on chord), Re=1.256� 107, free-stream Mach number, M1 ¼ 0:8,
and reduced frequency, kc=0.202. The computation begins with a uniform flow field of free stream at a¼ 0�.

The dimensionless time step is Dt¼ 0:05.
Fig. 3 shows the lift coefficients varying with the AoA after the flow field reaches its temporally periodic solution. The

computed lift coefficients agree well with the experiment of Davis (1982). Fig. 4 shows the moment coefficients varying

with the AoA. The agreement of the moment coefficient is not as good as that of the lift coefficient. However, the

agreement in the current results is better than the results computed by McMullen et al. (2002). The discrepancy between

computation and experiment in the moment coefficient is not fully understood.
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5.2. LCO of NLR7301 airfoil

The LCO case simulated is the test case No. 77 (Schewe et al., 2002, 2003; Dietz et al., 2004) of NLR7301 airfoil.

The chord length of the airfoil is 0.3m and the mean angle of attack is 1.281. The experimental conditions are the

free-stream Mach number of 0.768 and the Reynolds number of 1.727� 106 based on the chord length.

The nondimensional structural parameters used for the computation of fluid–structure interaction are summarized in

Table 1.

There exists always some discrepancy between the experiment and numerical simulation, which may result from

experimental and numerical uncertainties. In addition, it is observed that the LCOs are sensitive to initial conditions

due to bifurcation phenomenon. It is thus difficult to match the numerical initial perturbations with those in the

experiment. That is, if we directly use the experimental conditions only, the results may not match the experiment well,

or could be totally different. The numerical simulation hence involves a search process to match the experimental

conditions and results as much as possible.

In our numerical simulation, it is observed that the primary factors affecting LCO are Mach number, AoA and a0.
The present study investigates the effect of these factors and searches the values that the computed LCO agrees best

with the experiment. Two different procedures are conducted to simulate the LCO.

Procedure 1 follows the criterion used by Weber et al. (2001) and Tang et al. (2003), in which, both Mach number and

AoA are adjusted to match steady state surface pressure distribution between computation and experiment as much as

possible. The obtained Mach number and AoA are then fixed in the LCO simulation by adjusting the a0 until the

computed time-averaged AoA is close to the obtained AoA of the steady state computation.

Procedure 2 is developed in this research, in which the Mach number is fixed and the a0 as well as initial AoA are

iterated to match the experimental LCO amplitudes. The resulting time-averaged lift and moment are also taken into

account to compare with the experiment.

All simulations are conducted on an MPI based computer cluster with parallel computation. The parallel

computation is performed by a high efficiency algorithm with a general mapping procedure developed for multi-block

structured grid CFD methods (Wang and Zha, 2008b).
5.2.1. Steady state flow computation

The baseline grid is a single block O-type grid with dimension of 193� 97 and is equally partitioned into 16 sub-

blocks with 8 blocks in the circumferential direction and two blocks in radial direction as shown in Fig. 5. The mesh

dimension of each sub-block is 25� 49.
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Table 1

The nondimensional structural parameters used for computation.

Mach number xa ra da dh m oa oh

0.768 0.0484 0.197 0.0041 0.0073 942 0.31988 0.24306

0.753 0.0484 0.197 0.0041 0.0073 942 0.32625 0.24790
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Fig. 4. Comparison of computed moment coefficient with experimental data for the forced pitching airfoil.
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Fig. 3. Comparison of computed lift coefficient with experimental data for the forced pitching airfoil.

B. Wang, G.-C. Zha / Journal of Fluids and Structures 26 (2010) 579–601 589
The steady-state computations are conducted first to search for the flow conditions that match the computed pressure

distribution best with the experiment. Both the widely used Mach number, M, of 0.753 for CFD (Weber et al., 2001;

Tang et al., 2003) and the experimental Mach number of 0.768 are simulated. It is found that the steady state surface
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pressure agrees best with experiment at AoA=�0.451 for M=0.753 and at AoA=�0.21 for M=0.768. However,

both cases have some discrepancy with the experiment. Fig. 6 shows the surface pressure distribution for the two cases.

For the case of M=0.753, the shock location at the suction surface agrees better with the experiment, whereas for

M=0.768, the shock location at the pressure surface agrees better. Overall, the computed case with the experimental

M=0.768 is closer to experiment upstream and downstream of the shocks.

Mesh refinement is performed for the steady state case at Mach number M=0.768 to confirm that the baseline mesh

is sufficient to be used for unsteady LCO simulation. The baseline mesh is refined in both directions with the mesh

size increased by four times to 385� 193. As shown in Fig. 6, the computed surface pressure distributions between

the baseline and refined mesh have little difference, except that the refined mesh has sharper shock profile due to the

denser mesh.
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5.2.2. LCO simulation

5.2.2.1. Mach number=0.753. The first series of LCO search uses procedure 1 at M=0.753 and AoA=�0.451, which

are the conditions used by the research groups of Weber et al. (2001) and Tang et al. (2003). The LCO computation is

conducted by adjusting a0, the off-wind value of a to make the time-averaged AoA agree with AoA=�0.451. The LCO

computation is conducted using two different initial flow fields to investigate the effects of initial flow and perturbation.

One initial field is the solution of the steady-state computation. The other initial field is the uniform free-stream flow.

Both LCO computations start at AoA=01. The dimensionless time step of 0.01 is used. The dimensionless time is

defined as tc ¼ t=ðc=u1Þ, where t is the physical time.

The convergence history within a typical physical time step is shown in Fig. 7 at Mach number of 0.753 and a0 of

0.251. Figs. 8 and 9 show the computed LCO amplitudes. Both initial fields predict the final LCOs with about the same
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Fig. 7. Convergence history within a typical physical time step for M=0.753.
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amplitudes even though the transition period is different. Figs. 10 and 11 plot the lift and moment coefficients,

respectively.

The second series of LCO search use the procedure 2 at M=0.753. The search for LCO is conducted by iterating a0
and initial AoA to match the measured LCO amplitudes as close as possible.

Table 2 lists all the trail iteration cases at M=0.753. Case A shows the computed results using procedure 1. Case B to

F show the computed results with the initial field setup as uniform free stream at the different AoA and a0 using

procedure 2.

It can be seen from Table 2 that Case A matches the lift and moment coefficients best with the experiment among all

the cases. However, the predicted LCO amplitudes are an order of magnitude higher than the experiment, just like all

other cases.



ARTICLE IN PRESS

Time

C
m

0 500 1000 1500 2000 2500

-0.12

-0.1

-0.08

-0.06

-0.04

-0.02
Uniform
Steady

Fig. 11. Predicted moment coefficient at M=0.753, initial AoA=�0.451.

Table 2

Comparison of the test cases at M=0.753.

NLR7301 LCO Initial AoA a�0 Lift coef. Moment coef. h (mm) a� Frequency

Case A 0.0 0.25 0.2318 �0.0800 10.134 3.1942 33.49

Case B 0.0 0.60 0.2944 �0.0744 9.6768 2.9796 33.48

Case C 0.0 0.75 0.3180 �0.0756 8.6943 2.6921 33.48

Case D 0.0 0.85 0.3365 �0.0770 7.8386 2.4352 33.49

Case E 0.0 0.95 0.3548 �0.0790 6.9359 2.1566 33.48

Case F 0.05 0.85 0.3455 �0.0784 7.3517 2.2863 33.49

Experiment 0.272 �0.082 0.75 0.20 32.74

Table 3

Comparison of the test cases at M=0.768.

NLR7301 LCO Initial AoA a�0 Lift coef. Moment coef. h (mm) a� Frequency

Case A 0.0 0.68 0.2610 �0.0796 1.6509 0.4632 33.35

Case B 0.0 0.70 0.2758 �0.0807 4.2453 1.2349 33.36

Case C 0.0 0.75 0.2729 �0.0805 1.2617 0.3524 33.38

Case D �0.033 0.75 0.2673 �0.0799 1.4351 0.4015 33.39

Case E 0.05 0.75 0.2803 �0.0816 0.8192 0.2287 33.36

Experiment 0.272 �0.082 0.75 0.20 32.74
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Table 2 indicates that both the initial AoA and a0 have influence on the amplitudes of LCO. However, the

computation is not able to match the experimental amplitudes by adjusting AoA and a0 due to the Mach number that is

different from the experiment. The numerical simulation shows that the flow is separated at M=0.753 with the large

amplitude (Wang and Zha, 2009; Wang, 2009).

5.2.2.2. Mach number=0.768. Following procedure 2 developed in this paper, the LCO at the experimental Mach

number of 0.768 is simulated. The dimensionless physical time step is the same as that used at M=0.753.

Table 3 lists the iteration cases at Mach number 0.768. The computed averaged lift, moment coefficients, frequencies

and amplitudes of Case E all agree excellently with the experiment. Figs. 12, 13, 14 and 15 show the computed LCO
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amplitudes of pitch, plunge, lift and moment coefficient at Mach number 0.768 for Case E. Compared with results

predicted at M=0.753 as shown in Figs. 8, 9, 10 and 11, it can be seen that the predicted amplitudes at M=0.768 are

more than one order of magnitude smaller. This means that the Mach number has a significant effect on the amplitudes

of plunge and pitching oscillation. The reason may be that the different Mach number causes different shock strength,

different shock/boundary-layer interaction patterns and hence different unsteady nonlinear forcing and moment.

Totally 685 000 physical time steps are performed in the computation of case E with tc=6850. The stabilized LCO

period in the simulation is up to 2250tc and 88 cycles. The convergence history within a typical physical time step is

shown in Fig. 16. It indicates that only about 7 pseudo time steps are needed to reach the convergence criteria of 10�6 in

this computation. Fig. 17 shows the contours of Mach number at one cycle for case E. Figs. 18 and 19 plot the

corresponding positions of (a)–(j) in a cycle for pitching and plunge movement, respectively. The computed phase
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difference between pitching and plunge movement is 1721, which agrees very well with the experimental phase difference

of 1761. Different from the LCO computation at M=0.753 with a sizable separation, the computed separation at

M=0.768 is extremely small near the trailing edge, so small that it is not found when the streamlines are plotted for the

first time. By zooming in the trailing edge region, the separation can be clearly seen as shown in Fig. 20. Fig. 21 plots

the instantaneous surface pressure distributions at the two extreme a positions. On the pressure surface, the strength of

the shock at the minimum a position is a little stronger than that at the maximum a position. There is a tiny shock

motion on the pressure surface. On the suction surface, the strength of the shock at the maximum a position is stronger

than that at the minimum a position. The shock oscillates back and forth slightly with the variation of AoA, and the

amplitude is larger than that on the pressure surface. The computed results indicate that the LCO is maintained by the

nonlinear forcing caused by shock oscillation and flow separation.
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Table 4 summarizes the computed LCO amplitudes and frequencies at different conditions compared with the

experimental results (Schewe et al., 2003). At M=0.753, the present computed results are comparable to those of

Weber et al. (2001) and Tang et al. (2003). However, at M=0.768 of the experimental condition, both the predicted

plunge and pitching amplitudes agree excellently with the experiment, whereas the previous results predicted by other

researchers (Weber et al., 2001; Tang et al., 2003) at M=0.753 are more than one order of magnitude higher. This is the

first time that a numerical simulation of NLR7301 airfoil LCO matches the experiment.

In general, the prediction accuracy of Case E at M=0.768 is on the same order of the experiment measurement

uncertainty. The only primary difference from the experiment for Case E is that the a0 used in the simulation is 0.751,

whereas the experimental value is 1.91. The a0 only affects the initial moment imposed on the elastic system and remains

as a constant in the whole LCO process. Such a difference may be attributed to uncertainties in the experiment and

numerical simulation, and the sensitive nature of LCO to initial perturbations, which are difficult if not impossible to be

made the same between the experiment and numerical simulation.

Note that the final LCO plunge amplitude is about 2.7/1000 of the chord length and the pitching amplitude is 0.22871.

These are very small values. The accurate resolution of such small scale vibration without it being damped out in the

long time calculation may be attributed to the high-order low-diffusion numerical schemes and the fully coupled FSI

model employed in this research.

An important phenomenon needs to be pointed out: that the LCO amplitudes are dependent on the initial flow fields.

The results in Table 3 are computed using the initial field set equal to the uniform free-stream everywhere. If a

converged steady state solution is used as the initial field, the LCO amplitudes may be very different with significantly

greater magnitude. The different a0 and initial AoA also set up the initial lift and moment to certain values. In other

words, different initial perturbation may generate very different LCO solutions. This appears to be the bifurcation

phenomenon due to the nonlinear aerodynamic loading of lift and moment, which are caused by the pattern of shock-

wave/turbulent-boundary-layer interaction. If we can understand the systematic relationship between the LCO

amplitude and initial perturbation, it may be possible to control the LCO and mitigate or prevent it. Even though the

LCO amplitudes at different conditions vary significantly as presented in Tables 3 and 4, the computed frequencies vary

little and agree well with the experimental value.
6. Conclusions

A fully coupled fluid–structure interaction with high order finite differencing schemes is conducted to investigate the

flow nonlinearity of transonic NLR7301 airfoil LCO. The one equation Spalart–Allmaras RANS method with a low
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diffusion E-CUSP scheme (Zha et al., 2008) and fifth-order WENO scheme for inviscid flux are employed. A fully

conservative fourth-order central differencing scheme is used for the viscous terms.

At experimental Mach number of 0.768, the computed LCO amplitudes and frequency are in excellent agreement

with experiment by adjusting AoA and a0. The time averaged lift and moment coefficients also match the experiment

very well. The free-stream Mach number has the major effect on the amplitudes of LCO due to different shock/

boundary-layer interaction patterns. The initial flow field or initial perturbation has a strong influence on the

amplitudes of LCO. The prediction accuracy is on the same order of the experiment measurement uncertainty. The only

primary difference from the experiment is that the a0 used in the simulation is 0.751, whereas the experimental value is

1.91. The a0 only affects the initial moment imposed on the elastic system and remains as a constant in the whole LCO

process. Such a difference may be attributed to the uncertainities in the experiment and numerical simulation, and

the sensitive nature of LCO to initial perturbations, which are difficult if not impossible to be matched exactly.
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This research appears to be the first in which a numerical simulation of NLR7301 airfoil LCO matches the experiment.

It may be attributed to the high-order low-diffusion numerical schemes, the fully coupled FSI model, and the turbulence

model used in this research.

The simulations in this paper also confirm some of the experimental observations and answer some important

questions. First, the LCOs with relatively small amplitude are captured with unbounded flows in the numerical

simulation. This means they should not be the artifacts of the wind-tunnel experiment and most likely are a factual

phenomenon. Second, the co-existence of multiple LCOs at constant flow conditions is confirmed in our simulation.

The reason that other numerical simulations only capture the LCOs with large amplitudes may be due to their high

numerical dissipation that either smears out the small amplitude LCO or is only able to resolve the large amplitude

LCOs. Third, the numerical simulation of this research confirms that the wall boundary layer transition from laminar to

turbulent does not have a large effect on LCOs at high Reynolds number, because our simulation assumes that the

boundary layer is fully turbulent from the airfoil leading edge. Fourth, the simulation confirms that the wind tunnel

wall interference with or without a perforated test-section does not have much effect on LCOs because the present

simulation uses the unbounded flow condition with no wind tunnel wall effect at all. Fifth, the numerically captured

LCO at M=0.768 is accompanied by flow separation, although the separation region is very small. This verifies the
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Table 4

LCO comparison of computation and experiment.

NLR7301 LCO Mach h (mm) Error (mm) a� Error f (Hz) Error (Hz)

Present 0.768 0.8192 0.069 0.22871 0.02871 33.36 0.62

Present 0.753 10.134 9.384 3.19421 2.99421 33.49 0.75

Weber et al. (2001) 0.753 10.5 9.75 4.091 3.891 33.42 0.68

Tang et al. (2003) 0.753 8.99 8.24 3.171 2.971 34.3 1.56

Experiment 0.768 0.75 0.201 32.74
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hypothesis that the LCO processes are maintained by the nonlinearity of flow separation induced by shock/boundary-

layer interaction.
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